

YTTRIUM ALUMINUM MONOCLINIC (YAM) SYNTHESIZED BY HIGH ENERGY BALL MILLING

M. K. IKHWAN¹, R. S. AZIS², M. HASHIM³, DIANE HOLLAND⁴, M. ZULKIMI⁵, A. ZAKARIA⁶ & J. HASSAN⁷

^{1.2,6,7}Department of Physics, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
^{2,3,5,6,7}Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
⁴Department of Physics, University of Warwick, CV4 7AL, England, UK

ABSTRACT

The structural of the mixture of Y_2O_3 -Al₂O₃ has been studied using X-ray diffraction and ²⁷Al MAS NMR. The sample was synthesized by high energy ball milling process. The polycrystalline YAM powder was form together with impurity YAP and Y_2O_3 when heated at 1100°C as confirm by XRD and NMR. Increasing heating temperature up to 1400°C did not seem enough to completely transform Y_2O_3 and α -Al₂O₃ into YAM phase as the grain growth occur and increase the diffusion distance in solid state reaction.

KEYWORDS: Y₄Al₂O₉, High Energy Ball Milling, XRD, ²⁷Al MAS NMR